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NONPLANAR WING LOAD-LINE AND SLENDER WING THEORY

By John DeYoung
Vought Corporation Hampton Technical Center

SUMMARY

Nonplanar load line, slender wing, elliptic wing, and infinite aspect
ratio 1imit, loading theories are developed. These are quasi two-dimensional
theories but satisfy wing boundary conditions at all points along the non-
planar spanwise extent of the wing. These methods are applicable for
generalized configurations such as the laterally nonplanar wing, multiple
nonplanar wings, or wing with multiple winglets of arbitrary shape. Two-
dimensional theory infers simplicity which is practical when analyzing
complicated configurations. The lateral spanwise distribution of angle of
attack can be that due to winglet or control surface deflection, wing twist,
or induced angles due to multiwings, multiwinglets, ground, walls, jet, or
fuselage. In a quasi two-dimensional theory the induced angles due to these
extra conditions are likewise determined for two-dimensional flow.

Equations are developed for the normal to surface induced velocity due to a
nonplanar trailing vorticity distribution. Example application of these
methods are made for a rectangular wing with wingtip winglets. Compared

with a planar wing, induced drag is reduced 5, 13, 66 percent for aspect ratios
of 0, 10.9, and infinity. The same results apply to a 30° swept wing with

0.29 taper ratio and smaller aspect ratio.

INTRODUCTION

Theories for multiplane systems and wing endplate theories span the
history of aerodynamic theory. Early analytical solutions are detailed in
reference 1. Theoretical development tended to follow the needs of aircraft
design. In the beginning aircraft were multiplanes including biplanes
and triplanes. Two-dimensional airfoil tunnel tests in Europe were



traditionally models of sections with endplates. These required corrections
from wing with endplates to two-dimensional section data. In reference 2
by solutions in the Trefftz plane the induced drags are determined of many
wingtip configurations. These include vertical plates at various span
stations, circular bodies, and array of fins. Some of these wingtip
configurations were computed with electromagnetic analogy methods. Winglet
concepts advanced by Whitcomb are presented in reference 3. These are
uniquely designed angled wingtip fins for minimizing induced drag and
improving tip flow. Reference 4 has a chapter on nonplanar 1ifting-surface
theory, however, only 1ift curve-slope data of a V wing and near ground
data are presented.

A recent theoretical parametric study of wing winglet configurations

is made in reference 5. It is concluded in this reference that for the same
root bending moment, a winglet provides a greater induced efficiency incre-
ment than does a tip extension. This study provides an abundance of winglet
data with a wide range of geometric values of wing and winglet. A summary
statement in reference 5 is 'This study provides sweeping confirmation, for
a wide range of wings, of the recommendations of Whitcomb in NASA TN D-8260'.
The winglet concept has been pioneered by Richard T. Whitcomb.

Present day design objectives are to interrelate aerodynamics with
structural and weight characteristics and determine possible improvements
in aerodynamic efficiency. As an example, a planar wing design is
established. This wing has a certain root bending moment, 1ift, surface
area, and induced drag. The designer determines that a wing winglet
configuration with the same bending moment, 1ift, and surface area, has
Tess induced drag. The designer may choose a highly staggered biplane
winglet configuration with same as single wing structural weight, 1ift,
and surface area, and determines that induced drag is the same, however,
fuselage bending moment is greatly reduced with the staggered biplane

configuration.



Objectives of the present study are to develop nonplanar wing loading
methods which are viable for taking into account interference effects
from other wings or from other vortex systems. Nonplanar means that a
wing or vortex system extends vertically as well as laterally.
Because nonplanar wing theory combined with other nonplanar vortex systems can
become analytically complex and computationally limited, a nonplanar load line
method will be developed. A planar wing load line theory is developed in
reference 6. Load line theory is a 1ifting surface theory confined to a line,
for arbitrary wing chord distribution, quasi two-dimensional, and solutions
result in spanwise loading aerodynamics but no chord loading detail. This
theory satisfies all boundary conditions along the span of the wing. Analytic-
ally, nonplanar load 1ine principles can be made to extend and expand into
.nonplanar slender wing and elliptic wing analyses which, in addition, have a
higher order of direct solution uniqueness. Nonplanar wing theory starts by
developing generalized loading integral equations which relate the induced
velocity normal to the surface to the wing loading, or a sum of wing loadings

if for multiwings.

SYMBOLS
A aspect ratio of nonplanar wirg, 4se2/Se
Ap aspect ratio of planar wing, bp2/S
ap >ap* Fourier coefficient of spanwise loading along the wing, equation
(15)
bp wing span of planar wing
Cpj induced drag coefficient, D;j/qSe, equation (69)
CL 1ift coefficient, L/qSe, equation (54)



Dnn*

Inn*

Knn*

wing rolling moment coefficient, rolling moment/gSeZSe,
equation (61)

wing running bending moment coefficient ébout lateral point ny,
Mbp/aSe2se, equation (56)

wing root bending moment coefficient, Mby/qSe2se
wing chord

wing average chord, Sg/2se

equals Cp with n or n* substituted for p

wing chord Fourier coefficients, equation (35)

Fourier coefficients for product of wing chord and angle of
attack conditions, equation (35)

wing induced drag

nonplanar induced drag influence coefficients, zero for planar
wing, equation (67)

induced drag efficiency factor, equation (116)
dimensionless circulation, T/2sgV, equation (14)
wing chord influence coefficients, equation (35)

nonplanar wing chord influence coefficients, zero for planar
wing, equation (35)



Ln*y

n,

n*, p

surface loading factor, equation (24)
wing 1ift, also wing rol1ing moment, equation (61)

nonplanar wing lateral-vertical plane influence function,
equation (32)

L1 integration nonplanar wing spanwise loading influence
function, equation (33)

odd integer, number of terms in quadrature formula, equation
(18)

wing bending moment about a specified span station

integer denoting number of unknowns and equations, equation (34)
integers of spanwise loading Fourier coefficients and influence
coefficients, odd only for symmetric loading, equations (15),
(34), and (35)

dynamic pressure, %—sz

surface area of nonplanar wing, includes wing area in yz-plane
surface area of planar wing

spanwise coordinate along nonplanar wing surface, figure 1(a)

total semispan distance spanwise along wing surface from wing
root to wing tip, figure 1(a)

free stream velocity



induced velocity normal to wing surface or trailing vorticity
sheet, equations (5) or (6)

integers which denote span station$, equation (41)
Tateral position of spanwise wing station s
vertical position of spanwise wing station s
aircraft angle of attack

wing geometry angle, equation (28)

induced angle normal to wing surface, equation (27)
wing circulation

nonplanar wing dihedral cant angle, measured from y-axis,

figure 1(a)

wing twist angle

dimensionless vertical coordinate, z/se

dimensionless lateral coordinate, y/se

spanwise station at which wing running bending moment is taken
lateral semispanwise center of pressure location

angles used in derivation of induced velocity, figure 1(a)

wing taper ratio, tip chord/root chord



2o My planar wing winglet taper ratios, equation (75)

wo ratio of winglet root chord to wing root chord, equation (75)

A sweep angle of wing half chord line

u integers for quadrature formula, equation (18)

p density

¢ spanwise trigonometric coordinate, cos s, equation (15)

g dimensionless spanwise coordinate, s/sq, equation (14)

1 winglet toein angle, positive for toein deflection, equation
(28)

Subscripts:

av average

b bending moment, also bending moment about lateral point nj

cp center of pressure

e nonplanar wing tip

i, J ith and jth vorticity sheets, equation (6)

n,n*,p integers, equations (34) and (35)

) spanwise station where winglet begins, that is junction of wing

and winglet



planar wing

wing root

vorticity sheet

normal to surface induced velocity or downwash point
integers, equations (41) and (71)

integers, equations (18), (21), and (22)




DEVELOPMENT OF THEORY

Nonplanar loading theory differs from planar theory by the difference in
velocity induced normal to the wing surfaces. In load 1ine theory this
induced velocity is simply that due to the trailing vorticity system. Using
the nonplanar induced velocity combined with the planar load-1line theory
of reference 6 will provide a nonplanar load-1ine theory.

Induced Velocity Integral Equation of Nonplanar Vorticity Sheet

Single vorticity sheet. - A single nonplanar trailing sheet extending
Tongitudinally from zero to infinity is shown in figure 1(a). The normal
induced velocity at point (y,, z,), by Biot-Savart law, is given by

~-dr
dw(yy,zw) = Tr COS ©
where r = [(,Yv - yw)2 + (Zv - Zw)2]]/2
Referring to figure 1(a), the following relations can be developed:

I _m -
8+t vy =5+ 80, 8=0)- vy ]

COS Yy = COS Bp COS vy + Sin By Sin vy
~ (2)
cos 8g = (yy=yw)/r, sin ag = (zy~-zy)/r

tan vy, = (%ﬁ)

wr €05 vy = [0+ (892172, sin = (), 1 + (1217172

Let s be distance along the surface of the vorticity sheet measured from
midpoint of the sheet. Then the differential relation between s and y is

ds = [1 + ($)21'/% gy (3)



With the 6, 6y, and y, values of equation (2) inserted into equation (1), the
incremental downwash at point y,, z, due to a nonplanar trailing vorticity

sheet is
r
dW()’w,Zw) = - _Z:_Sr'Yzﬂ [.YV - Yy Tt (zy - Zw) tan ‘yw] g— ds ()
+
ol @iz ) (di)w & o
I dy’w (yv-yw)® + (2y-zw)
Integration of equation (4) leads to
e dz
- ywYut(zv-2,) (57)
w(yw’zw) = _ 21_,"-_ ['I + (dZ)Z] 1/2 w . w dy W2 g_gds (5)
SSe (Yyy-yw) + (Zv'Zw)

where the integration is taken along s, that is a line integral along the
vorticity sheet. The integrand variable yy is related with s by the expres-
sion given in equation (3). The point at which normal velocity w is
determined is defined by y, and z,. The nonplanar vertical displacement of
the wing given by z is an arbitrary function of y. The derivative (dz/dy)y
is the slope at z at the point yy, z,, and is constant in the integrand of
equation (5) as are also y, and Z,-

Multiple vorticity sheets. - An example of a pair of vorticity sheets is
shown in figure 1(b). The total induced normal velocity at sheet j is not
only that due to sheet j but also that due to sheet i, or for many sheets with
i=1,2, ... Inequation (5) the induced velocity normal to the slope
line (dz/dy), is determined at point (yy, zy) which is a point on the
vorticity sheet represented by the function zy(y). However, the point
(yw> zy) is arbitrary and can be on any curve z(y), that is can be different
than the zy(y) curve. Let zyj represent an N-group of vorticity sheet
curves, then the normal velocity along the zyj curve obtained by reapplication
of equation (5) is given by

N Sei d;
e oy o 2] )2 32 Yvi=YyiH2yi-2wi) (@5)wj  dr .
WJ (.VWJ ’ZWJ) = I, [] + dy WJJ [f VT Jwj vl “W] a:;’- J a?;l/_1 dSV'I (6)

i=1 Tses (Yvi-Yuj)® + (zyi-245)?

10



where j = 1 through N. With equation (6) the induced normal velocity can be
determined along the span of N abitrarily shaped vorticity sheets or wings.
Some examples of various shapes that can be analyzed are shown as follows:

iy o1l N— 7/

- VARRERAN

Induced Velocity of Wing with Winglet

For a single wing with winglet the vorticity sheet appears as follows:

4 winglet
in S — e
wing
(\ / )" y
-Ye ~Yo 0 Yo Ye
or - s or So

For this nonplanar geometry the coordinate relations are

in the range in the range in the range

Yo=Y < Yo Yo=Y =VYe “Ye =Y <= -Yo

z=0 z = (y-yp)tan v z = (-y-yp)tan vy

) y (7)

a§-= 0 —§-= tan vy g§-= -tan vy

y=s y = sg + (s-sg)cos v y = -sg+(s+sg)cosy
z = (s - sg)sin v z = -(stsg)sin y

With equation (7) values inserted into equation (5) the velocity normal to
the surface is given by

11



for 0 £ sy= s

So dL_ gs Sef +50(1-cosy) 1% d
1 dsv ' 1 SyCOSy -SytSpli-COSy ag-v Sy
wisy) = - =] v —f
4f50 Sv = Sw L [sycosy -sytsg(1-cosy)]? +(sy-sg)?sin?y
- dr (8)
B 0[5, cosy ~Sy-So(1-cosy)] dsy ds!_“
4“5 [sy cosy -sy-sg(1-cosy)]? (sy+sg)2sin?y
-Se
and for sg = sy < Se
. T s
- ]v/PSO [svc05y—sw+so(1-c05y)]g§&»dsv : e %g. dsy
ol B
Tso [sy-swCosy -Sg(1-cosy)]? +(sy-sg)?sin?y 450 Sy - Sw

- d
1 So [-(1-2cos?y)sy-sy-2s¢(1-cosy ) cosy 1 agV dsy

4ﬂs [(sy-sw)cosy -2sq (1-cosy )12 + (sy*+sy)? sin2y
Zsq .

(9)

The integral with the (sy - sw)_1 term in the integrand contributes a
large part of the induced velocity, because it results from the vorticity
nearest the point at which the velocity is determined. This integral is
analytically simple to obtain if the integration is taken over the whole
wing; that is, from -sq to sq. Equations (8) and (9) give the same result if
the (sy - sw)'1 integral is added for extending the integration and subtracted
from the more complicated integrand. With this adding and subtracting and in
dimensionless notation, equations (8) and (9) simplify to

for Oéowe 99

Q
—
o
Q
=
 —
]
]
N —
|
q .
< |Q
]
O
Q Q
T | <
]
N-—l
%
]
Qlo,
[l Fep]
<
o
Q
<<
[]
N—l
by
_
+
i
le
<
o
Q
<<
——
sl
(an)
po—
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and for og & oy & 1
1 dG % =0p

-— do
-] do v dG 1 dG
(Gw) '2—' E\_/JL-_—G; - Ef L_ d—cv- de - -2'1—‘_-[ LO a—c—v dOv (-”)
-Uo "]
where

L = - (oy * og)(oy + oy = 209)(1 - cos v) (12)
* [{oy=ay)Z + 2(oy = o) {ow £ og) (1-cosy)] (Uv—ow)
L, (1-2 cos?y)oy + oy + 209 (1-cos y)cos y 1 (13)

[(ov-ow)cos Y - 20q (T-cosy)l? + (oytoy)“sin®y oy - oy

The dimensionless values in equations (10) through (13) are defined as

follows:
S So G = T

= 25gV ° &9 (14)

<|=

With equations (10) and (11) the induced angle normal to the nonplanar
wing surface can be determined for an arbitrary loading G. This is for the
nonplanar wing or wing-winglet defined in equation (7).

Integration with G represented by a Fourier series. - Let the wing

loading coefficient along the s or o coordinate of the wing be given by
N N

G(¢) = :E: ap sin no , %%—= ZE:n an €os n¢ (15)

n=1 n=1

where o = cos¢. Then the first integral in equations (10) and (11) becomes
1 dG T dG

dé ' y
da,, dpy "V _ 1 COS n¢y d¢

- __JL____ v = y_doy

?:/ﬁ COS¢y - COS¢y  2m E}'a"V/[~ COS¢y - COSdy

A 0 n=1 0
™

. COS n¢y do - 7Sin n¢y

Since v/(\ cos ¢y - cgs by sin by : (16)
0

13



1 [~ doy v 3 :
5] et T Zn an sin noy (17)
-1 n=]

When G is expanded in a Fourier series the L integrals become complicateds;
however accurate integrations can be obtained by using a simple quadrature
formula given by

$2

M
~//f‘ Flo)dp = S22 [f(Ql) : f92) zz.f(¢u)] (18)
¢1 u=1

where ¢, = ¢1 Eiiﬁ—i—$ll, and M is an odd integer. Then the L_ integral
of equation (10) becomes

W ;A dG p N %
- Efl" E doy = ?jf L_(¢v,¢w)m déy = 5— Zn a?f L_{éy-dw)cos n¢y dgy
g 0 n=1 0

N M
= )n an{%;Tﬁ%%Ty[F_(0,¢w)+L_(¢o,¢w)COS 6042 ) L (8150)
n=1 u=1
cos "¢1u1} (19)

where ¢, = ﬁ%%T’ and where examination of equation (12) shows that

L_ (¢0,¢w) = 0. Similar integrations are made for the other L integrals
which appear in equations (10) and (11). With the equation (19) procedure
and with equation (17), equations (10) and (11) for symmetrical loading

(n = odd) reduce to

N
. _ sin n¢
of (dy) = ZE "3y (et * o) (20)
n=1
odd

14



where for 0 < oy £ 0g OF ¢g < dw < 32'-
My

% L-(0,¢w) g ¢
Low = 21r(Mc1)+1)[ 7t ZL_(cgu,%)cos "‘blv]"zn'(ﬂm'z‘m'[

p=1

Mo
~Ly(msdw) | ZE Ly (d2ps9y)cos néoy ]

p=1

(21)

where ¢, = ﬁ%%T‘ $op = T - ﬁz+1

and for og= o, =1 or 0= ¢, = ¢
M3

-2 -L(m-95,¢w)cOs n
an = 21r1(TM3$C1L) [ . ¢% %) B +Z L-(¢3u,¢W)COS n¢3u]
u=1 (22)

My

-L 5 b,
M (D) [—Jl%%ihLl*;ELo(¢4u,¢w)cos n¢4Q]

u=1

where ¢3, = ¢o *+ y%%i%fﬂl s buy = T - ﬁ%%T‘ and M;, My, M3, and M, are

odd integers.
In equations (21) and (22), the L+(¢u,¢w) and Lo(¢u,¢w) functions are given
by equations (12) and (13), in which o, = cOS¢y, ow = COS dy. and oy = €OS %q-

Load-Line Theory

Load-1.ine theory is developed in reference 6 for the planar wing. In
this theory the boundary conditions are satisfied at all points along the
span and an aspect ratio factor is introduced, however, the theoretical
simplicity of the 1ifting-line method is maintained. In the present develop-
ment, this load-line theory is extended into a load-line theory for nonplanar
wings.

The integral loading equations start with the relation that section
loading is given by

15



oVT = 27 (ac - kai)qc
(23)
or \—I;-= c (ac - kaj)

where a. is the incidence angle between free stream velocity and wing chord,
ofj is the induced angle due to wing wake vorticity sheet or multiple
vorticity sheets extending longitudinally from zero to infinity, and k is
a lifting surface downwash factor developed in reference 6. The factor k
originated in the study presented in reference 7, where it had the value
(A+4)/(A + 2). Later work showed that a more accurate value for k is
_ A+ 3.79

k = g+ 7189 (24)
Using the dimensionless definitions of equations (14) and (15) and defining
nonplanar aspect ratio and average wing chord as

4se 2 S .
A = EEQ" Cay = ?%é’ Se = surface area of nonplanar wing (25)
2se = wing tip to tip perimeter length
then equation (23) becomes
N
Zan sin ng = %ET:V (ac - koi) (26)
n=1

Equation (26) is the form of the equation for 1ifting-1ine theory
solutions except here the k factor is introduced. In 1ifting-line theory
k=1. The planform geometry terms c/czy and oc are functions of ¢, and aj =
a1(¢, n, ap). By specifying ¢ at m spanwise stations, .m linear simultaneous
equations result with m unknown ap's. These are solved for a,. These
values of ap represent the solution for which the boundary conditions are
satisfied at a finite m spanwise stations.

16



In load-1ine theory the boundary conditions are satisfied at all points
along the wing span. This is possible by a spanwise integration of the wing
chord, angle of attack, and induced angle. In equation (26) aj can be
represented by the function

aj = ai (¢, n*, ap*)

Then the expression on the right side of equation (26) is only a function
of ¢ and n* but not of n. Then by Fourier theory the Fourier coefficients

-Z-f{A-E— [oc - kaj (¢, n*, an*)]} sin n¢ d¢

are given by

an

or

Ll u
ap = %J/ﬂ -%;;—ac sin n¢ d¢ - %%/F‘ %5—-a1 (¢,n*,ap*) sin n¢ d¢ (27)
0 0

for n = 1, 2, 3, «

For a single wing, o in equation (27) is given by the ratio of equation

(5) to V. For multiple wings, ac in equation (27) is added to equation (6) minus
equation (5). In addition, all the terms in equation (27) become those for

the jth wing; that is, Aj, (C/Cav)js acj» Kj» and ajp, which are the Fourier
loading coefficients for the jth wing. The wing geometry angle oc is made up
of the effect of wing or aircraft angle of attack o on the nonplanar wing,

the wing twist e, and the toein-toeout angle y of the nonplanar wing. Wing
twist and toein angle with the wing uninclined are defined as angles between
the wing chord and free stream velocity, positive in the direction for loading
increasing on the upper wing surface. For the nonplanar wing the effective
angle of attack at a wing section is a cos y. Then

ac = a COS v+t e + ¢

where tan vy = (%%)¢, cos y= [1 + (g%)é 171/2 (28)
and e=e(9)y v=u(p)

17



Thus the solution of the nonplanar wing loading integral equation reduces to the
load-1ine solution for determining the apn Fourier loading coefficients of
equation (27). It is simply a wing geometry integration which includes the

wing chord distribution along o or ¢ and the angle o distribution given in
equation (28). The second integral involves the integration of w (yy, zw) =
Vai(¢y) of equation (5). In a dimensionless equation (5) the nondimensional
derivative of circulation becomes an n* series given by equation (15) but

with n = n*, and ¢ = ¢y.

Load-1ine method for single wing. - The induced angle in equation (27)
can be expressed as that due to a planar wing plus that due to the difference

between nonplanar and planar wings, as was done in equations (10) and (11).
Let ajp represent the induced angle due to a planar wing and ajp that due
the effects of the nonplanar condition. Then aj = ajp * ojo. Then, in
nondimensional terms, equation (5) can be written as

aj (¢y) = %ip (ow) + aio (ow) (29)
where with equation (17)
1 dG N
1 [ doy dov .
aip (dy) = - 5 E_M:—E_'= n*ap*x sin n* ¢, (30)
and with equation (15)
1 N
=1
ajg (dw) = z—w—f Ly %C%dov = 2 n*apxln*, (31)
-1 n*=]
where
ny - nyw + (zy - ¢ )(QEJ
Ll - v d W \ W dn W _ 'I (32)
2 z
[0+ G017 2Llnyny)? + (5y-5,)2] OV =

which approaches zero as Ny > Ny
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w

Ln*w = M L]_ cos n¥* oy d¢’v

o

n=Y/Ses T = 2/Sas o = s/se = cos ¢, and n, ¢, and o by [ (33)

equation (3) are related by do = [1 + (gﬁ)zjl/z dn

With equations (29), (30), and (31) inserted into equation (27), the loading
integral equation for the single nonplanar wing becomes

N N
k Tk
an = San - 28 ZE N*Ipp* an* - 1= ZE N*Knn* an* (34)
n*=] n*=1
n=1, 2, 3, N
where U \
: 2 o .
Can = ﬁ;/f\ Cav ac sin ne dé
0
n n+n*-1
3 *
Inn* = %;/f‘ gav s;?nn¢¢ sin né d¢ = . }i Cp
0 p=In-n*| + 1 | (35)
v
=1

2 . P

Cp:?/\c—;; sinpp de = =+
0
Gl

Knn* = —12F c—:;; Lpn*y sin n¢ d¢ J

(¢}

where the Ippx - cp relation is derived in reference 6. The first two

terms on the right side of equation (34) are the same as.those for the

planar wing since then Knypx = 0 because L; = 0. The solution for ap involves

N equations and N unknowns of ap or ap* which are solved as linear simultaneous
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equations. The coefficients Cp and cyp are integrations of the boundary
conditions, that is, the wing chord distribution and wing angle of attack
distribution along the spanwise ¢ = cos™! ¢ parameter. The cp's are the
Fourier coefficients of the wing planform which wing in a Fourier series

function can be rebresented by

cle) . s 36
Cav ;% Cp ST Po (36)

Similarly cqn's are the Fourier coefficients for the product of wing chord

and geometric angle ac. The angle o which the wing chord makes with free
stream velocity is given in equation (28) where o is constant with respect

to ¢ or o. Equation (34) applies to a single nonplanar wing of any vertical-
lateral shape since ¢ = z(n) or z = z(y) are arbitrary functions. In addition,
the wing chord distribution with unswept midchord 1ine can be for any plan-
form shape, and the wing twist or winglet angle distribution are arbitrary
functions.

Symmetric spanwise loading. - This loading results from a spanwise

symmetric wing planform with spanwise symmetric distribution of angle of
attack across the span. With these conditions only odd numbered values of p,
n, and n* of cp, Cans and Kpn* have values in equation (35). For symmetric
loading solutions it is convenient to evaluate the a; coefficient in terms
of ratios of ap/a;. For n = 1 equation (34) becomes

N N
k k
ap = %'cal - %ﬁ'lll a; - %—'Kll a; - %%‘ }Z n*Iyp*apx - %E' zin*Kln*an* (37)
n*=3 n*=3
odd odd
. 4 -
Since 111 F’ I1n* Cn*, Inl = Cp
then _ ' mCq1
a; = N
*
A+ 2k [1+ 3K + 7 Z (cp* + 2K g% )n* g;‘—] (38)
n*=3
odd
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Dividing equation (34) by equation (38) gives
' N
an _ Can 2k, T 7k mk Can _ an
a = Ei;'[]+ﬁ—(]+?K11)] - salcpt2kn1)t ox [Cal(cn*+2K1n*)‘Inn* 2Knp* In* 37
n*=3

odd (39)

forn=3,5,7,...N

where the coefficients caps Ipn*, Kynw, and c, (note that p can be substituted
by n or n* in the cp integral) are given in equation (35). Only the
coefficients for odd numbered values of n, n*, and p are needed for the
symmetric loading solution. Equation (39) has (N-1)/2 equations in n with
(N~1)/2 unknowns of ap/a; or ap*/a; which are evaluated by solving as
simultaneous linear equations. The cp and cpx coefficients are the cp values
given in equation (33) but with n or n* substituted for p.

Planar-wing winglet solution for symmetric spanwise loading. - The Fourier

loading coefficients a, are obtained from the solution of equations (39) and
(38). For this nonplanar configuration the L; function of equation (32) is
formulated as L,_ and Lo functions given in equations (12) and (13). The
numerical 1nteg;ation of thesé functions results in the Lpw expressions given
in equations (21) and (22). From equation (35) the Knn* coefficients are

W

2 .
Knn* = 1—T-u/(i\-E—;;-Ln*W sin n¢ d¢ (40)
0

where for this nonplanar configuration the L., are given by Lp, of equations
(21) and (22) but with the substitution of n* for n. Equation (40) can be
integrated numerically by using the quadrature formula of equation (18). Let
¢ = ¢y = wr/(M+1), then

M
2 .
Knn* = W T Z [(_C—ST)W Ln*w S1n n¢w]
w=1]
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where M is an odd integer. Since the chord distribution spanwise is
symmetric and for odd n sin n¢y is symmetric, and the induced angle

contribution of L%, is symmetric, then
M-1

£

_ 2
Knnv = w7 [(g5

_ 2
Jue1 Ln* wep Sin 0 %—+ 2 zi (Engw Lp*w Sin neyl (47)
2 2 w=1

where the (M+1)/2 subscript denotes midwing conditions, that is at ¢y = /2
or oy = cos ¢, = 0. The chord term (c/cay), is that at span station ¢y =
wr/(M+1).  Lp#*, is with ¢, in the ¢, range of equations (21) or (22), in
which n is changed to n*. In equations (12) and (13) oy = cos [wx/(M+1)].
To minimize numerical integration error ¢, should be chosen between the

¢w points, or ¢g # wr/(M+1).

The planar-wing winglet ap coefficients for symmetric spanwise loading
are obtained by the solution of equation (39) with the Khn* of equation (41)
and the cup, Inp*, and cp of odd n, n*, p integers in equation (35). Example
values of Lpxy with ¢g = 57/32 radians have been computed using equations
(21) and (22) and are presented in table I. These values are for M = 15
with ¢y = wn/16.

Slender Wing Theory and Elliptic Wing Theory

E1liptic wing and A+~ 1limit solution. - For the elliptic wing

cC=cp (1-02)]/2 = ¢cp sin ¢, Seg = %—crse, %gg-— %K

(42)
C 4 oa1/2 _ 4 _.
- (1-02) = —sin ¢
With this c/cay equations (26), (29), (30), and (31) are combined to give
N N
zj (A+ 2 nk) ap sinn ¢ = 4 o¢ sing - 4k zi n* apx Lp*y sin ¢ (43)
n=1 n*=]
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then the Fourier loading coefficients for the elliptic wing planform are
N

an = geznk (Can - K ZZ n*Knnx an*) 4a)
n*=1

forn=1,2, .. . N

where Cqy and Kup* are the .coefficients given in equation (35) but with c/cay =
(4/7) sin ¢, that is

™

m
Can = %gy/” ac sin ¢ sin n¢ d¢, Kppx = %jyf\ Lp*w Sin ¢ sin n¢ d¢ (45)
() 0

For symmetric loading on the elliptic planform, equation (44) becomes
e

ol -
a; = N
m T an*
A+ Zk(] + 7 K11 + 7 Z n*Kln* .5?__)
n*=3
odd
>~ (46)
N
an - _] [Can 2 Can 4 Can .. c ) gni]
a; A+2nk A Col * ﬂk(ﬂ Cql + Cor Kip-Kng )+mk Z3(E§?‘K1n* Knn* )n* 3,
n =
form=3,5,...N odd J

As aspect ratio approaches infinity, the solutions for ap reduce to direct
relations between ap and the wing geometry coefficient cyn. For A + «
equations (38) and (39) become

a; -
: A

f (47)

where cypn is given in equation (35), or for the elliptic wing by equation (45).

2
£

-
1 Cal

=1}

J
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Slender wing. - When aspect ratio apprcaches zero, then, for any wing
planform with trailing edge cutout aft of all points of swept lTeading edge,
as shown in reference 8, equation (44) for A -~ 0, k - 2, becomes
N
an = 7= (can =2 ) % Kopsage), n = 1,2, . . . N (48)
n*=1

where cyn and Knp* are given in equation (45). With symmetric loading

equation (46) for a A - 0 wing is

ay = ”c“ﬁ

*

4+21TK11+21TZn*K1n*-2-L
n*=3

N
an _ 1 _(2 Can 4 Con i} T_ Can ) . Ak
a Zntn Cay ' Ca1 Kii = Kn1) + 25 *23(%‘1 Kin¥ = Kpp*)n* 3
n =
odd J

forn=3,5,...N

Another derivation of nonplanar slender wing theory is to note from
equation (26) that the boundary conditions are simply that ac = kaj = 2aj
as A ~ 0. From equations (29), (30), and (31)

N N
1 .
% = 5 5in e ZE na, sin ng + Z[ n* apx Lyxy (50)
n=1] n*=1

then, with the condition o, = 205, equation (50) can be written as

(o

N
na, sinn ¢ = oc sing - 2 ZE n* apx Lpky Sin ¢
1 n*=1

=

n
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from which the Fourier coefficients are

T N T
nap = %;//"ac sin ¢ sin n¢ d¢ - 2 Z:n*an*(%f“Ln*w sing sin n¢ d¢)
0 n*:'] Y

which in terms of cy, and Kyp* of equation (45), becomes
N
an = 3= (Cap - 2 Z W*Kon* anx), n=1,2, . . . N (51)
n*=1

which is the same as that of equation (48).

Force and Moment Coefficients

Spanwise loading and 1ift coefficient. - With the Fourier loading

coefficients ap determined by equation (15), the spanwise loading
distribution along the spanwise o or ¢ coordinate is

N
r .
G = 75V T E: ap sin n¢ (52)
n=1

where ¢ = cos~]a, and the loading is normal to the wing surface in the
yz - plane.

The Tift coefficient is given by

1 1r
L .
CL = ag = M szO' =fﬁz Sing d¢ (53)
=1 0

where G is the vertical component of the Toading coefficient G which
itself is normal to the nonplanar wing surface. Gz is given by

Gz = G cos vy
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where as in equation (28)

cos y = [1 + (dﬁ)zr”2

then
= N m
¢ = a%__= éj//\e cos v sin ¢ do = A ;E'aqj/f‘ cos y sineg sin n¢ d¢
e
0 n=1 0
= %A-al - AZ[ an (1-cos y) sin ¢ sin n¢ dé (54)

For a planar-wing winglet, vy is constant between 0<¢ = ¢g, T-¢o<¢= T
and zero between ¢p < ¢ <« w-¢p, then equation (54) for symmetric loading
reduces to

N
A . s1n(n 1)é0
C = I—%l-- A(1-cos v) {a1(¢0 - 515?290- + }: [ -
d

Wing Bending Moment. - A wing running bending moment along the wing

span coordinate o or ¢ can be formulated for a nonplanar wing by use of the
following geometry:

arbitrary nonplanar
wing

(Z-Zy) siny
(Y-Yp) cos ¥
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The incremental bending moment at point (yp,zp) is the incremental Toading
oVrds times the perpendicular moment arm between points (yp, zy) and P.

That 1is
dMpy, = oVT [(y-yp)cos v + (z - zp)sin y] ds

With integration and in dimensionless terms, the wing bending moment
coefficient at point (np,zp) is

Mbb L
Cmbb = agg@g;‘= %;//ﬁ [(n - nb)COS y + (C'Cb)SinY]G do
i)

b
%’ [(n-nb)cos vy +(z-zp)sin y]G sin ¢d¢

0
A b
= Eh— an [(n-np)cos vy + (z-zp)sinylsing sin n¢ do
0

(56)
where G is given in equation (52) and the coordinate relations and y are
defined in equations (28) and (33).

For a planar-wing winglet the coordinate relations with np < ny are
given by
n=np = 0-0p n-np = og-op*(o-o5)cos vy
z-zp = 0 0£ 0= 0y, z-tp = (o-o0g)sin v gp< o< 1 (57)
y=0 vy = constant

then equation (56) simplifies to

0o 1
clleb = é—f (o--o'b)GdO' + é\-/ [0-00 + (O'o"O'b)COS'Y]G dO'
%9
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where v is constant in the integrand. For symmetric loading with G in the
Fourier series expansion, for the planar-wing winglet and ¢b'§ ¢o» this
integrates into

N -
- . ¢b=STNopCOSp s N=1
by = &Y an 51n£?22)¢h i 512£2+2)¢b -2 cos ¢p| ,
/ sin(n-1)¢p  sin(n+1)ep
n=1 — " Thtl g
odd

6o=SiNn ¢g COS ¢g, N = 1
+ 2(1-cos y)(cos ¢p-cos ¢g)
sin(n-1)¢q _ sin(nt1)eo

n-1 e 0T (58)

where Cmbb is the wing bending moment coefficient at span station ¢p due to
loading outboard of ¢p. The wing root bending moment is with ¢p = 53 then
equation (58) reduces to

N

1 .
= A (-1)n+ . bo-Sin $oCOS ¢g, N=1
Crby = 2 ji %n ~ﬁ§:%2::- %{1-cos Y)CoS ¢o
n=1 sin(n-1) ¢q _ sin(n+l)eq N >1
odd n-1 n+l 2
(59)

The coordinate relations for running bending moment of the planar-wing
winglet at points on the winglet, np = ng,

n-np = (o - op) cos v
z-zp = {0 - op) siny
vy = constant

then using equation (56) as before

1
Cmbb = %)//‘ (o-cb)G do
%b
N $b-SiN¢pCOSPps N=1
_ A_EE 3 sin(n-2)¢p _ sin (n+2)¢p _ 2 cos
8 n n-2 n+2 ¢b sin(n-1)¢p _ sin(n+1)ep
n=1 n-1 n+1
odd n>1
(60)

28



where the bending moment is at span station ¢p = ¢g, that is, ¢p is on the
winglet.

Wing rolling moment. - Rolling moment is the same as the wing root bending

moment except the spanwise loading is antisymmetric and the integration spans
the wing. Thus for rolling, equation (56) becomes

™
c1 = 5§<l;—25_e= %/(n cos y + ¢ sin v)G sing do (61)
0

where here L denotes rolling moment and C1 is the rolling moment coefficient.
For a symmetric planform and antisymmetric loading
N-1 w/2
C; =A jg an (ncos y + ¢ sin y) sin ¢ sin n¢ d¢ (62)

The spanwise symmetric planar-wing winglet specified in equation (57) has

Jo 1
Cy = Af oG do + Af (o-0p + 0 cOs v)G d¢
[0} 0o
then with antisymmetric loading
N-1
_ A sin(n-1)eg sin(n+l)¢
i =g a - ?(1 -COS Y)COS ¢q Z an [ - - e Q (63)
n=2
even
Induced drag coefficient. - Induced drag is the spanwise integration of

the product of spanwise loading normal to w1ng surface in the y, z plane and
wake normal-to-surface induced angle. Thus

Se

Dj = pV / Taj ds (64)

_se

29



In dimensionless terms
1 T

Co; = 85 = A f Baj do = “f 6(¢) aj(o) sing do - (85)

-1 0

With equations (52) and (50) inserted into equation (65), the drag
coefficient becomes

N N N
A
Cp; =7~ ) ma# +A ) an ) nm*anx Dnp (66)
n=1 n=1 n*=]
T
Dn* =~//" Lp*y Sine sin n¢ do¢ (67)
b

where Loxy s given in equations (33) and (32). This Dpn* integral is of the
same form as the equation (35) Kyp* integral and is identical when (2/w)(c/cav)
equals sin ¢. Comparing equations (67) and {45), it can be noticed that

the Dpp* coefficients have an identity with the Knp* coefficients of the
elliptic wing; that is

72

Dnn* = %E'K""*elliptic s K""*A+0 (68)
wing

Examination of equations (33) and (32) shows that Dpn* depends only on the
wing spanwise vertical displacement, the ¢z = ¢(n) function, and is
independent of all other planform geometry such as aspect ratio, chord
distribution, sweep, and wing angle variation. Thus once Dp,* coefficients
are tabulated for a given ¢ curve, they are valid for any planform shape.
For symmetric spanwise loading, Lnp*, is symmetric, and also only odd n and n*
apply; then equations (66) and (67) simplify to

N N N
A
n=1 n=1 n*=1]
odd odd odd
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m/2
Don* = f//r\ Lp*y Sin ¢ sin n¢ d¢, for odd n and n* (70)
~o
The Dpp* coefficients of the planar-wing winglet configuration with
.symmetric spanwise loading are determined in the same manner as done for the
Kanx coefficients of equation (40). After employing this similarity relation,
which is simply the substitution of sin ¢, for (2/7)(c/cay) into equation

(40), equation (70) becomes -1
2
Dpn* = gy (bn* pyp Sinn 5+ 2 j{ Lk, Sin ¢y Sin noy) (71)
-—2-_ w=1

where ¢, = wn/(Mt1), and M, n, and n* are odd integers. For the planar-wing
winglet Lpxy's are determined from the appropriate ¢, range of equations (21)
or (22) (in which n is changed to n*),

Example computations have been made for one planar-wing winglet
configuration; that is, for ¢, = 5n/32 radian or oo = .8819 which is the
span station at which the winglet begins. For M = 15, then ¢y = wr/16, the
Lp*y computed from equations (21) and (22) are presented in table 1. With
these Lp*y values, the Dpp* coefficients are determined from equation (71)
using M = 15. Dpn* coefficients are presented in table II. Whén
these Dy,* values are inserted into equation (69), the induced drag coefficient
depends only on the spanwise circulation distribution or laterally
surface spanwise loading distribution normal to the surface, and is
independent of planform shape including winglet shape or sweep. This
planform is nonplanar and is for a planar-wing winglet with wing tip winglets
starting at g = .8819 span station with winglet at a given y angle.
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PLANAR-WING WINGLET LOADING SOLUTION
FOR RECTANGULAR WING

The sample application of the theory developed in the previous chapter
demonstrates the usage of the method. The example wing configuration is a
symmetric wing with winglet at each wing tip, the combination being described as

a planar-wing winglet. Particularly, the rectangular wing and the slender wing
is investigated in detail. An objective is to show example solutions of

equations (39) and (49) for the prediction of apn/a; Fourier loading coefficients.

Chord Distribution for Tapered Planar-Wing Winglet

The chord distribution is

C:Cr-(Cr'Co)g_O,OSO'SO'O

Cwo - (Cwo‘cwt)(%fgi" o s o<1

where ¢, is wing root chord, co is wing chord at span station oy, Cyg 1S
winglet chord at span station oy, and cyt is winglet chord at winglet tip

(0 = 1). The chord distribution of equation (72) leads to the following wing
geometry relations

_ 4se? S
Se = CrSe[(]+A0)Co+)\w0(]+)\w)(]‘O’o)], A=—S%_, Cav = ‘?Eg (73)

Cr_ - 2
Cav = (T oo (THrg) (T=09) (74)

c_ _¢Cr _ 1=
Cav  Cav ( %9 o), 0 <0 <ao 5)
5

Ccy T=2w  _1-
Cav Awo (] + ]-0'0 0o m“gd),o'o <o <1

32



where 2, = co/c),. is planar-wing taper ratio, iy = cwt/cwo is winglet taper
ratio, and Ayq = CWO/Cr is ratio of winglet root chord to wing root chord,
and o = coS ¢, 05 = COS ¢g-

Planform Fourier Coefficients
From equation (35), the Cp coefficients.are obtained from the integration

m p=-|
_2 C - . 4
cp = ;—J/r65;-51n pp dp = — (76)
0

where, for the tapered planar-wing winglet, c/cay is given by equation (75).

For a rectangular wing with rectangular winglet, equations (74) and (75)
reduce to

c _ 1 s
Cav - AW0+(]_AWO) CcO0S ¢0 ? ¢0 s 2
- AWo
= S F (Tohy <05 55 0 < ¢ < ¢ (77)

where Xy, = Cwing1et/cwing, and c/cyy is symmetric with respect to ¢.

Inserting equation (77) into equation (76) the cp coefficients are

- A& Mo+{1-2yp) cos po
%D " T gt (T ug) cos g " O P oMY 79)

From equation (35) the Ipnx coefficients are given by

n+n*-1

Inn* = > o (79)
p=|n-n*] -1
odd
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The o distribution of equation (28), for the planar-wing winglet is
given by '

oe = ote , ¢0 < ¢ < '%
(80)

acos y + e + 9y 0 < ¢ < ¢g

-

where o is independent of ¢; however, ¢ and y can be functions of b
Assuming onlyadditional loading conditions, then twist e is zero, and assume
that the toe in angle y is constant along the winglet. Then the Can
coefficient of equation (35) with equations (77) and (80), becomes

4y wo (cos y + %) + [1 - Ayolcos v + %)] COS N ¢g

, odd nonly (81)

which is the c,, for an untwisted rectangular wing with rectangular winglet
of chord Cwing]et
¢ = 0 to ¢4, at constant dihedral cant angle y from the wing plane, with
toein angle .

= Awo Cwing’ with winglet extending from span station

Nonplanar Kpn* Coefficients

For the planar-wing winglet, these coefficients are obtained from
equation (41). The Lp*, coefficients in this equation are independent of
chord distribution, hence, once known for a given ¢, and y, they can be
combined with any chord distribution for evaluating Knn* coefficients.
Example values of Lyx, for ¢o = 5n/32 radians and y = 90 and 75 degrees are
shown in table I. These values are based on computations with M = 15 and with
ow = wr/16.  For an M = 15 computation these Lp*, can be inserted into
equation (41) and K,,+ computed with (c/cay) given by equations (75) or (77)
in which, o = cos ¢y = cos (wn/16) and oy = cos (5n/32) = .88192. Example
values of Kyp* are presented in table III for a rectangular wing with
that is, Ay = 1.

rectangular winglet with c =C

winglet = “wing?
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Loading Solution for Rectangular Wing with Xyy = 1 Winglet

This wing-winglet has the geometry

2S c

Se = 2Cses A= %, ==
then, from equation (78)
_ 4 _4 _ 4
Cp = 7p° Sn = e Cn* T o odd p, n, n* only
Equation (79) becomes
ntn*<]
T = 1
4 “nn* p
p = [n-n*] -1
odd

and equation (81) reduces to

1)

- Ao L2
Q

')
+ 24 - -
Can = 7 [cos v o (1 - cos v

)cos nog]l, odd n only

Equations (38) and (39) become

4[cos vy + %—+ (1-cosy - gdcos dod

a; =
A+ 2k[1 + %K11+ i (1%H*K1n*)%[111]

n*=3

odd

2k A

an _ C 2k
20 = O [1+5R(145K: ) - ﬁ"‘%‘+ Kn1)+ %£ :g:[%“?(1+n*%K1n*)-n*%'Inn*

n*=3 @

odd

_nx T an*
n" 3 Knn*] ai

forn=3,5,7,...N

(82)

(83)

(84)

(85)

(87)
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where " "
cos y + =+ (1 - cos v - a)cos Nég

ol +_1\[_)_+ - ¢ ._}k
cos vy + 2 (1 - cos v -

£

(88)

1
n

O

)cos ¢,

and n*(n/4) Iyp* values determined from equation (84) are tabulated in table
Iv.

Slender Wing Theory

As aspect ratio becomes small, the planform becomes slender and independ-
ent of wing or winglet planform shape or sweep if trailing edge cutout is
behind leading edge. With the ¢ = 0, o distribution of equation (80)
inserted into the cqn integral of equation (45), the cyy for A » 0 is

8 .
Cyy = ;%-[%—- (1 - cos vy - g)(¢o - sin ¢g COS ¢g)]
(89)
_ ' . (4]
Can = ;31 (1 - cos vy - g)[5125? 1)¢0 _ S12£? )Qo], odd n > 1
then the ratio is
(1 - cos vy - ¥ [s1n(n{1)¢Q,_ sin(271)¢0]
%an.= - o n- n ,odd n > 1 (90)
0] .
%~— (1 - cos y - g& (69 - sin ¢p cOS ¢g)
Comparing the equation (45) Kyn* coefficients for slender wings with the
Dpn* drag parameter coefficients of equation (67) it can be seen that
8
K =~ Dppx (91)

A-20

With equation (91), the slender wing equations (49) for determining symmetric
loading Fourier coefficients become

aj = "lal (92)
4 4 an*
4(1 + '.,?Dll + n*;Dln* E‘?—)

odd
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N

3n . 1cCun 1 (Can?t 4 J_Z Can x4 et an*

ay = T Gy, o (Cal —~ D11 - = Dp1) + 5 (G20 n* Dype-n*Tpn) 3 (93)
n*=3
odd

B forn=3,5,...N

where cqy is from equation (45), with ac from equation (28), and Dpp* from
equation (67). Equations (92) and (93) are general for obtaining nonplanar
slender wing solutions. The first term in equation (93) (that is, with
Dpn* = 0) is the slender wing planar wing solution derived in reference 8.
For the planar-wing winglet configuration, the cy, values are those in

. |
equations (89) and'(90), and Dpyp* coefficients are determined from equation (71).

an Coefficients for Aspect Ratio Approaching Infinity

These ap coefficients are given in equation (47) and are directly in
terms of cy,. Thus as A »

mC anp. Con
a; ~ —%L, a;y > Ca1 (94)

where withcyn values of equation (81), the ap values for a rectangular wing
with rectangular winglet for A - = are

¥ - ¥
aq Mo (cos vy + )+ [T - dyolcos v + ) ]cos ¢o

> o
a>7 Awo T (1 = Ayo)COS 0

; (95)

1+ [Aﬁé(cos vy + %)_1-1] COS N¢g

o4
2

> 1
n

1+ [Agé(cos vy + %)'1-1] COS ¢q

With Ayo = 1, equation (95) simplifies to»
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a; ~ %ﬁ [cos ¢y + (1 - cos ¢g) (cos y + %)]

-1 (96)
1 + [(cos vy + g) -1]cos n ¢q
1+ [(cos v + %)—ll]cos %o

ap , 1
aji n

which is for a rectangular wing with rectangular winglet having the same:
chord as the wing.

Rectangular Wing Winglet Numerical Solutions for ap
and Force and Moment Coefficients

These example solutions are all for rectangular wing and rectangular
winglet with winglet chord equal to wing chord. However, as aspect ratio
becomes small these data apply to arbitrary wing and winglet shape
as born out by the slender wing theory. Parameter values that remain the
same in this numerical example include

)\O = )\w = )\wo = ], q)o = 51\'/32 Y'ad, op = €OS ¢0 = .88]92, M= ]5, N=29
(97)

Parameters which have various values include

A, Ys ¥ . (98)

With N = 9 equation (87) becomes four linear simultaneous equations in ap/a;.
From equation (24) k = (A + 3.79)/(A + 1.895). Also define ypn as a shortened
notation for equation (88) which with y = 90 degrees and ¢ = 5 /32 radians
= 28.125 degrees results in

L4+ (1 - Ycos (28.125 n)

=Con _ 1 o (99)
N Gy n 88192 + .11808 ¥
®

Then with Ip,+ values from table IV and the y = 90 degrees values of Knyp*

from tabie III the four linear equations become
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A a a
(%-+ 2.0702)y3 - .69737 = (E'+ 8.5589 -~ 1.8682 ¢3)-E? + (6.5716 - 1.9083 ¢3)-5?
a a
+ (6.3840 - 2.0005 ¢3) Ef'+ (6.2065 - 1.8933 ¢5) E?
(%—+ 2.0702)1,(;5 - .44574 = (3.4571 - 1.8682 vs) 33 4 (%-+ 17.6827 - 1.9083y5) %?

a3
a7z ag
+ (12.7130 - 2.0005¥5) + (11.5070 - 1.8933 v¥s) a1

a1
(100)
(e_+ 2.0702)¥7 - .40765 = (2.6664 - 1.8682 ¥7) %%.+ (9.2030 - 1.9088 y7) %f
+ (} + 28.0203 - 2.0005 }7) -+ (18.6383 - 1.8933y7) 32
(R + 2.0702)yy - .30123 = (2.3797 - 1.8682 ys) 3>+ (6.8409 - 1.9088 yo) o

-+

(14.5977 - 2.0005 ¥o) %% + (e + 37.2048 - 1.893319) %95

When A and y/a are specified, a simultaneous solution of these four
gives the ap/a; from n = 3 through 9. With a,/a; known, a;/a can be evaluated
from equation (86) which, with y = 90 degrees and ¢o = 57/32, becomes

3.5277 (1 + .13389 ¥)
o a - a a a (101)
@ A+ 2k (1.0351 + .9341 S2 + 9542 25 + SZ + 9467 29)
a1 a]_ a] al

Loading equations for other y angles using equations (86), (87), and (88)
can be written in a similar manner to those of equations (100) and (101). It
can be noted that with vy = 0, Kyp* = 0, which is a plannar wing-wingiet
configuration. Values of ap determined from equations (100) and (101) and
for other y angles are presented in table V.

Slender wing. - With A -~ 0, solutions of equations (93) and (92) are
needed. For ¢, = 28.125 degrees, equation (90) becomes
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—-.6686 (1 - cos y - &) [sin (n-1) 28.125 sin (n+1) 28-125] (102)

Con - =
Cay 1+ .05024 (cos v + ¥) n-1 n+1
where the value within the brackets for n =3, 5, 7, . . . odd is respectively,

.18477, .19846, .12090, .00969, -.09870, -.07157, -.02282, .03164, and so on.
The coefficient cy, is determined from equation (89) which, for ¢5 = 28.125
becomes

Say = 1.212334 [1 + .05024 (cos v + &)1 (103)

then, from equation (92), the a;/a coefficient for A + 0, ¢o = 5v/32 radians,
and N =9, is

.95217 [1 + .05024 (cos y + ¥)]

a -
1 5 (104)
q 4 Ap*
-|+;T-D11+ Z n*?Dln*a
n*=3
odd

For an A > 0, N = 9 solution for ap's, equation (93) is solved. The value of

Cxn/ Gzt is given in equation (102) and n*(4/w)Dpn* values are in table II.
With v = 90° equation (93) is

-.00111 + .08255 yo = (-.94063 - .00027 yo) 22 + (.05642 + .00007 yo) 35
1

aj
(.01882 + .00051 y) %f'+ (.00965 + .00255 yo) 32
1

+

-.00052 + .02742 y,

(.03267 - .00018 wo)-gf + (-.98172 + .00004 y,) 25
1

+ (-.00323 + .00033 a7 4+ (-, + . aq
( Vo) g7+ (-.02269 + .00033 yo) 3% (145

.00519 + .0T193 y,

(-.00349 - .00008 o) 32 + (-.01700 + .00002 y,) gf
1
+ (-1.02633 + .00014 y,) 2Z + (-.01645 + .00072 o) 22
ai a

.00351 + .00074 y, = -.01391 %? - .01908 gf—+ (-.00932 + .00001 yg)

mLch oo
— LN

+ (-.99630 + .00004 y)
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where v
1 -
o
Yo = (106)
° 1 .05024 &

With v = 90 degrees, equation (104) reduces to

.92144 (1 + .05024 ¥)
= a Z a (107)
1 + .00645 23 - 00162 35 - .01203 22 -~ 05992 22
a ) a; a

=

When y/a is specified, a simultaneous solution of the equations of

equation (105) evaluates ap/a; from n = 3 through 9. The first Fourier
loading coefficient is given in equation (107). A ~ 0 loading equations for
other y angles are obtained similarly to the y = 90 degrees example. Values
of ap, determined for A - 0 from equations (105) and (107), and for other ¥y
angles are presented in table V.

With slender wing nonplanar theory a reasonable approximation for ap/a
as seen by examining equation (93) is, since Dpn* values are not large

an ~1 cyn
el o (108)

where cyn/a1 for A » 0 are given in equation (102). A better approximation
is to use equation (108) for approximating ap*/a; under the summation sign.

Then Can 4 4 4 ’ Can Can*
— - — — a -

an ~ odd

a1

(109)

4 con 4
n (1 +- o1 DIn T Dnn)

where the prime on the summation sign means the term is not summed when

n* = n. The coefficients D1, and Dpn symbolize D;p* and Dpp* for n* = n.
In.this form ap/a; can be determined directly and does not involve a
simultaneous equations solution. When ap/a; are known, a; is computed from
the equation (92) relation.
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A + » solution. - With ¢5 = 28.125 degrees equation (96) becomes

9&-+ 3. 5277 [1 + .1339 (cos v + gﬁ] (110)
L L 1339 cos vy + §E+ (1 - cos y - EQﬁcos (28.125 n) (117)
al n 1+ .1339 (cos vy + )

Equations (110) and (111) are the ap coefficients for a rectangular wing winglet

with winglet chord equal to wing chord, as aspect-ratio approaches
infinity. Example numerical values are included in the data of table V.

Lift coefficient. - With ¢y = 28.125 degrees, N = 9, equation (55)

becomes

CL = 821 11 . (1-cosy)(.047835 + .11763 gﬁ-+ .12634 %5-+ .07697 %1

(¢ 2a 1 1 1

+ .00617 gfoj (112)

Using equation (112) with the a, in table V, the 1ift-curve slope of the
various wing-winglet configurations can be evaluated, and these are presented
in table V.

Root bending moment coefficient. - With ¢5 = 28.125 degrees, N = 9,

equation (59) becomes

Crp,.

¢

)
LT T7

&

-84l

as , _1
ajz di

15

21

~—
ja}}

(113)

-(1-cosy)(.099400 + .24443 gﬁ.+ .26254 %f'+ .15994 gz.+ .01282 gﬂo]
1 1 1

Using equation (113) with the apn in table V, the wing root bending moment
coefficient of the various wing-winglet configurations can be evaluated and
these are presented in table V.
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Induced drag coefficient. - With N = 9, equation (69) becomes

hep[da@ee> 8y Betue] o

n*=1

odd odd odd

where, with ¢5 = 28.125 degrees and y angles of 90 and 75 degrees, n*(4/w) Dpp*
are listed in table II. Then, with vy = 90 degrees, equation (114) leads
to

Cp;
LI 12 az az _ as _ ag
—7 = 705 [1 03335 + 32 3 (.00333 + 2.82191 &3 .33261 = .03205 2
+ .09628 22) + 85 (- 00425 + 4.90862 35 + 19985 37 + 28517 29) (115)
a; aj a; a; a;
+ 37 (02387 + 7.18434 82 + 19903 22) + 89 (_ 03036 + 8.96666 -a—&)]
aj aj; a; ajz a3

An induced drag expression similar to that of equation (115) can be made

for the y = 75 degrees configuration by using the Dyn* coefficients of table
IT with vy = 75°. Induced drag coefficients computed from equations (114)
and (115) are presented in table V.

The drag efficiency factor e is

CL2 (CLG/'"'A)2

€= TACD; B Cp;/mAa” (116)

This drag factor e is given in table V as determined from the 1ift and drag
coefficient parameters listed in that table.

Ratio of Induced Drag of Planar-Wing Winglet to that of Flat
Planar Wing with Equal Lift and Root Bending Moment

A measure of the efficiency of a wing-winglet configuration is to
compare the configuration with a flat planar wing with the same 1ift and root
bending moment as that of the wing-winglet. The efficiency is measured in
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terms of induced drag. Let subscript p denote a flat planar wing. Then
the induced drag is

L Ln2 L L2
Dip = mqbpZep Di = TrgsaZe

where the second equation is the induced drag of the wing-winglet configura-

tion. In ratio form

= (Ly2 (bo y2 &p
L ()7 3 ¢ (17)

7

The ratio of root bending moment coefficients gives

Mb,./2Ls
Cmby/C r e
r/L = B Mby_ Lp bp (118)
(CmbY‘/CLTp MbY‘p/pr = Mbrp L ZSe
For the flat planar wing
Cmbyy - 1 Yep - |
2Mbpy = _Q% = .

where ncp 1s the spanwise center of pressure along the semispan. For the
condition of equal 1ift and equal bending moment, bp/ZSe, according to

equation (118), must be

Cmb
bp . & r
20" e T (120)
and the drag ratio from equation (118) becomes
Di_ _ (4 C‘“br)2 ep

The ratio of aspect ratio of the flat planar wing to that of the wing-winglet

is
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- (bp_y2
- (5

==

wniwm
<

When surface areas are the same, friction drag will remain about equal.
With the condition S, = Sq

P
Ay _ b 4 Cmby
AR = (2R)2 = (- 2
then the drag ratio is
Di _Apep
Dip A e

Flat planar elliptic wing. - Since the elliptic wing is the most
efficient in terms of drag, it serves as a good standard for comparison

nonplanar wings. Also the elliptic wing is analytically the simplest.

the elliptic wing

Values of these ratios have been computed using the data of table V.
Results are shown in table VI.

Flat planar rectangular wing. - Another standard for comparison is

compare the nonplanar wing with a flat planar wing having the same chord

distribution. In the present problem, the nonplanar wing-winglet has a
rectangular shape. For flat planar rectangular wings, it is convenient

(122)
(123)
(124)
with
For
(125)
(126)
to
to use
(127)
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2rhp _ (128)

where, from equation (286) of reference 6

(]
1]

01453 Toge [1 + (.52 M)z + (.26848 }e + (.07 %914]p (129)

10467 loge [1+.385  + (19167 Q)Z]p (130)

=
n

where the subscript p indicates that the A and k are for the flat planar
rectangular wing. The value of kp= (Ap + 3.79)/(Ap + 1.895) is given in equation
(24). Based on the analytical data of the rectangular wing (ref. 6), the
spanwise center of pressure can be formulated as

I 1.5573 (131)
cp 2 A
(12 + A+ 20.6)p
In a squared formulation
, .25 Ay + 2.183 (132)

Tep”™ = Ap ¥ 12121

Inserting this Ncp in equation (123) leads to a quadratic equation in Ap.
Thus

Cmb
Ap _ r, Ay + 12.121
A VA L R
hence Cmbr Cmbr
Ap? + [3.732 - 64 (g )2A]Ap - 775.788 ()2 A = 0 (133)

Thus, with a computed nonplanar wing value of Cmbr/CL for a given aspect
ratio A, the equivalent planar wing Ap is obtained by solving the quadratic
equation (133). With Ap known, ep is determined from equations (127) and
(129). Then the drag ratio is determined from equation (124). Values of
these drag ratios have been computed using the data of table V with results
shown in table VI.
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A » », - As aspect ratio approaches infinity the wing circulation
becomes directly

2r _ 2o (134)

then similarly to the formulation of equation (54) and (56)

Vag ¢
CL, = 2n f ~ T c0s v do (135)
0
Cmb % ¢ ,
L & Cay (n cos vy + g sin y) do (136)
o

For the planar-wing winglet, these equations become

%
CLa = 25 [0//‘ Eﬁ;- do + (cos v + £)COS Y J/; Eg;—do] (137)

%0

0 oo (138)
Then for the A » = rectangular wing with winglet chord equal to wing chord

CL, = 2m [cos ¢ + (1 - cos ¢o)(cos y + gocos v] (139)

Cmby-

a

= %'[0052 9o + (1 - cos ¢o)(1 - cos ¢, + 2 cos ¢ cOS v)
(140)
(cos v + 4]
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The ratio of equation (140) to (139) gives the bending moment to 1ift ratio
as

Cunb COS ¢g {1 + [(—MQ-) + (—m‘l) c05y]}(c05y + i)
r

oS ¢ oS ¢ ()
L 8 [ﬁ + lE§§§$9ﬂ-(cos v + —Jcos Y]

The drag ratio given in equation (124) is the product of the aspect
ratio and the drag efficiency factor ratio. As A -+ =, the solution of equation

(133) gives

¢

Cmb
R CR=CE (182)

where Cmbr/CL is given in equation (141). For a planar rectangular wing

ep = - (]43)
S 1
n=1 "
odd
For the nonplanar wing the drag efficiency factor is
2
“a?
where CDi/u2 is obtained from equation (114). The A -+ = ap coefficients are
presented in equation (96). Combining these equations results in
any2 an an* « 4
za zal zal " o Do
1 + ]__(l)i_(bﬂ. lp'Y n:] n*=1
e . ( CoS ¢g 2 0 odd odd (1a0)
e , 1-C0S ¢g © 144
1 cos PyCOS ¥ :E: 1
n

o3
A
o —
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where yy is shortened notation for

v, = cos y + ¥ (145)

The summation in the denominator of equation (144) is a logarithmic infinity.
The Dpp* summation in ratio to this is negligibly small. Using the aj

coefficients of equation (96), the first summation in the numerator becomes

2
Z" (%?') Z%‘[%‘f“-wY)cosn%]Z
n=1 n=1
odd _ odd
> L L+ (- s gol2 Y
n by = ¥, )€0S 4o )
n=1 n=1
odd odd I
ZcosngD
n
n=1
= 1 2 odd
Doy ¥ (T = wees gol2 W * 20y (oy) 57—
>
n=1
odd
ZM
n
1 n=1
t (1 -9)2 45 (1 -y,)2 20
ZZ 1
n
n=1
odd
Now
0s 1
> coshia - lan jcot of ,and y St Ly [cot g
n=1 n=1
odd odd
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which are finite values for ¢5 > 0. Since these terms are divided by
infinity the expressions with the cosine summations are hence zero. Equation
(144) now simplifies to

1 - 2y + 3yy2

2 1-cos_¢g 2
2 cos? ¢ (1 + <05 B PyCOS )

ole

(146)

With equation (141) inserted into equation (142), the planar rectangular wing
aspect-ratio ratio as A - o becomes

1 + [(]'COS QQ)Z + 2 1 - cos $0 cos Y]‘\b-y 2

A (8cmbr)2 COS ¢p COS ¢p (147)
= = C0S* ¢q ~
A CL 1 + 1 =€0S ¢, (0s v
CoSs ¢ 'Y

Combining equations (124), (146), and (147), the induced drag ratio parameter

is 2
fi + [(T-COS day2 4 p 1C0S dg (o Y]wY
Ds ] \. CoS ¢g cos g
Do = 7 (1-2 vyt 34y T-cos ¢ (148)
'p (1 + — =0y, cos y)"

coS ¢o

where y, = cos v + p/a. Equation (148) is the ratio of the induced drag of a

rectangular planar-wing winglet as A ~ « to the induced drag of a planar
rectangular wing of equal root bending moment.

In equation (148% there is a value of y/o at which Di/Dip is minimum.
Take the derivative of Di/Djp with respect to Yy Set to zero, and solve!

for gy, to obtain

e 20 - 12)
Ymi ,
B;" P+ [PZ +4(1 - T2)(3 + 372 + 6 Teogy - P)]]/z

> 149
b (149)

@ ‘min T Ymin T €08 ¥
D D J

50



where

T =1 -¢€OS ¢g
cos ¢g
(150)
P=3-3T2 - (3T + T3) cos vy - 2T2 cos?y
The example configuration has ¢, = 28.125 degrees. Then
T = .13389
(151)
P = 2.94622 - .40406 cos y - .03585 cos2y
_ ¥ _ 1.96415
Himin = almin” €05 ¥ ° P+ (P2 - 3.92830P + 11.99614 + 3.15571 y1/2 (152)
D'i D'i - . . . COS vy
and equations (148) and (147) become
Di .1y 4 3p2) L1+ (01793 + .26778 cos y)yy]® (153)
Dip 2 v TSy (T + .13389 y, cos v)*
Ap _ (scmbr)z _ 77779 [] + (.01793 + .26778 cos y)wl]z (154)
G . T+ .13389 ¥, cos v

Using equations (151) through (154), numerical values can be determined. These
values are presented in table VII.

An important wing-winglet condition is to have minimum drag ratio occur
when ¢/a is zero. This means that the drag will remain at the bottom of the
drag bucket at all values of a; that is, independent of 1ift. Minimum drag
results when the conditions of equation (149) are fulfilled. When y/a = 0,
Ymin Di equals cos y, then solving equation (149) for cos y leads to a fourth
degree polynomial in cos y, given by

2T2cos*y + (9T-2T2 +T3) cosdy - (3T-6T2 +T3) cos2y + 3(1-T2)cos y - 1+T2= Q

(155)
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For the example configuration ¢, = 28.125 degrees, then T = ,13389,
and the solution of equation (155) for cos y results in

cos y = .32987 I
vy = 70.74 degrees
g—};= .33705 - (156)
Cmb..\ 2
Ap _ MDp\ =
E& = (8T) = .80951
¥ -9 ]
ko

in which Dj/Dip and Ap/A are evaluated with yy = cos v in equations (153)
and (154).

Stender wing with y = 0. - Since Dpp* coefficients are zero when y = 0,
then from equations (90), (92), and (93) for the slender wing

g[mnml)Qa_smhwﬂjm]g
an -1 m n-1 n+l a (157)
a n + 2 .
1 + £ (4o - sin go cos ¢) &
2 .
gl-= 1 + ;'(¢o - sin ¢g cos ¢g) g— (158)

For vy = 0, equations (55), (59), and (66) with equation (157) can be written as

b _ 1 (1+ —2— jk) (159)

e=1+ky (——-"‘—E)2 (160)
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where

kg = %-(¢o--sin ¢o COS ¢p)
® nti
Ky = g_:g: (-1)Z_ fsin(n-1) ¢5 _ sin(n+1) ¢o]
L™y (nZ-4) n n-1 n+l
oad (161)

00

o = @2 > 1[eintel) e sint]) g0

n n-1 n+1
n=3

odd

As aspect ratio approaches zero, ncp becomes 4/3w, and ep = 1, then equations
(123) and (124) for A -~ 0, v = 0, but for arbitrary values of ¢g and y/a,
become

Cnb 3k, ¥
A mby 2 1y, 2
== (3 ) = (1 + —————) (162)
A i CL -I+k01.2_
o
. 3k12 v 2
%!—= 1+ —2 [1 + k, (——"‘—)] (163)
P ]+k0'z:_ -I"l'ko-(cii

This function in equation (163) results in a drag bucket along y/«. Take the
derivative of Di/Dip with respect to y/a, set to zero, and solve for y/a,
gives

B nin = — ! (164)
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Inserting equation (164) into (163) gives the equation for minimum drag as

2 1/2
D _5 18 k2, 2
21 - 2 0 Rl 4 (& - _1_
Di; ~ 8 [.1 P B et - g0 - 724 ] (165)

where k; and k, are functions of only ¢,, as can be seen in équation (161).

With ¢o = 28.125 degrees, the kg, ky, k, from equation (161) are
ko = .047835, k, = .006857, k, = .009080

then from equations (164), (165), and (162)

v = -
by .= -2.25573
Dy
-%?— - .95084 (166)
ip
Cmb
Ao . 39868, ——~ = .10058
A CL

For the condition v = 0, ¢g = 28.125 degrees, values from equations
(157), (158), (159), (160), (162), and (163) are presented in tables V and
VI.
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RESULTS AND DISCUSSION
Load-Line and Slender Wing Theory

Analytically, these are two-dimensional theories. That is, only induced
velocities normal to the surface in the yz-plane enter into the solution.
Longitudinal effects enter the problem only insofar as wing chord distribution
in the load-1ine method influences the solution. The load-line solution is
for wings with the one-half chord line straight or unswept in the yz-plane.
However, swept wing parameters, developed in a fo]]owing'seCtion, approximate
swept planform geometry effects for solution with load-1ine theory. Because
of the quasi two-demensional nature of these theories, they are ideally
suited for the more complex type of loading solutions (such as, taking into
account nonplanar effects, wnterference effects of multiplanes, fuselage-by-
image methods, wing-in-jet, ground, tunnel walls, or passing through trailing
vortices of another aircraft). This is because the load-1ine method is quasi
two-dimensional, hence, in many cases, the additional normal-to-surface induced
velocity due to the added configuration 1likewise may be determined for two-
dimensional flow. Because the boundary conditions are satisfied at all points
with the Toad-1ine and slender wing theories, the spanwise loading can be
predicted accurately for any complex spanwise distribution of wing surface
inclination (such as winglet toe-in angles, control surface deflections, twist,
induced angles due to other wings, fuselage, wing-in-jet, ground, or free
vortex). The introduction of the induced-angle parameter k of equation (24)
transforms 1ifting line theory effectively into a 1ifting surface theory, or
load-1line theory, for the prediction of spanwise loading characteristics. The
integrated 1ift is accurate since the definition of k depended on this Tift.

Swept wing approximation for load-1ine theory. - Load-Tine theory can be
made applicable to swept wings by a redefinition of the aspect ratio and wing
chord distribution parameters. From simple sweep theory concept of flow

normal to wing, the effective aerodynamic semispan of the swept wing is
given by the distance along the midchord line from wing root to wing tip
denoted by seg,. Then the effective aspect ratio and 1ift parameters are
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A =_£_25A=EEA.25_E_=_S_EJLA; andCL =EEACL (]67)
av  Se A se

=
O
o3
<
[72]
D
(%]

Equation (167) applies to a sweep angle that varies along the span, such as that
for a cranked wing. For a constant sweep angle, sep/Se = cos A, then

A, = A/cos A3 CL, = CL/cos A (168)

where A is the sweep angle of the wing one-half chord line.

In addition to the swept-wing parameters of equations (167) and (168), the
swept wing needs a spanwise wing chord factor which relates wing sweep angle
to wing taper ratio. Shown in figure 21 of reference 9 is a curve of taper
ratio as a function of sweep angle. Wings with this sweep and taper ratio
have approximately elliptical spanwise loading independent of aspect ratio.
This curve was analyzed for the present study with the results

- 1 - sin A
A= 375 Tt (169)

Equation (169) forms the basis for defining the equivalent chord distribution
of a straight wing which will give a spanwise loading distribution similar to
that of the swept wing. The effective chord distribution is of the form

¢y _1-5sinA_ +2|g] sinn ¢

where the center of spanwise chord distribution is

1
Occ = /G?:v—dd
0 (171)
straight
ellipse 4 taper 1+ 22
- 37 - 3+ 3
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When ¢ = 1, ¢ = ¢¢, and, wheno =0, ¢ = Cp. These values are inserted into

equation (170), and a ratio made; then equation (170) becomes equation (169)
when xe = .375. Equations (167), (168), and (170) provide swept wing load-

line theory replacement parameters which are read as

for A in load-line theory, substitute sqy A/sg or A/cos A
for C_ in load-line theory, substitute sg)C{/se or Cp/cos A (172)
for c¢/cay in load-line theory, substitute (c/cay), of equation (170)

The chord conditions given in equation (170) provide an interesting
relationship for swept wings which have elliptical additional spanwise Toading
distribution. For the unswept elliptic planform, (c/cav)e = (4/7)(1 -02)]/2.
Then the chord distribution for swept wings is

-2 0o -8 sinal
£ =T _ , 2 (173)
Cav T -sin A + ZlIsin A

For the chord distribution given in equation (173), the swept-wing aerodyanmic
characteristics are given by the elliptic wing results of equation (46),
provided A is replaced by A/cos A and C_ by Cr/cos A.

Rectangular Wing Winglet, ¢q = 57/32, Ayo = 1

Example solutions for the aerodynamic characteristics of this configura-
tion are shown in the previous chapter. Results, including influence
coefficients and force and moment coefficients, are presented in tables I
through VII. Examination of table VI shows that, compared to a planar elliptic

wing of equal Tift and equal wing root bending moment, the drag ratio for the
wing-winglet is about 5% less when A - 0, about 10% greater for A = 10.94,
and infinitly greater as A +~ ». Comparing with a planar wing with same
rectangular planform shows definite drag buckets at all aspect ratios. The
induced drag ratio, ratio of aspect ratio, and wing root bending moment data
of tables VI and VII are presented in figure 2 as functions of winglet toe-in
angle. The induced drag ratio curves of figure 2(a) have drag buckets with
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respect to toe-in angle. These buckets are shallow and wide for the low
aspect ratio wing but become deep and narrow as aspect ratio becomes large.
At minimum induced drag ratio, the comparative reduction of induced drag is
about 4% at A -~ 0, 11% at A = 10.94, and 66% at A -~ ». The position of the
drag bucket along the /o axis in figure 2(a) is strongly influenced by the
winglet dihedral cant angle y. It is also influenced by the ratio of winglet
chord to wing chord. This characteristic is useful for configuration design
since, when a value of y/o and winglet chord are specified, y is defined

by the minimum induced drag condition.

Curves of ratios of wing root bending moment coefficient to 1lift
coefficient are presented in figure 2(b). These values apply to both the wing-
winglet and planar-wing configurations since the condition for comparison was
that 1ift and root bending moment be the same. The Cyp./CL ratio becomes
smaller as aspect ratio and toe-in angle decrease and as dihedral cant angle
increases. The aspect ratio of the planar rectangular wing in terms of that
of the rectangular wing-winglet is given in figure 2(c). This is the aspect
ratio the planar wing must have in order to give the same 1ift and ‘wing bending
moment as the wing-winglet with higher aspect ratio. It can be recalled that
the wing-winglet aspect ratio definition is based on total spanwise distance
along wing and winglet and total surface area which includes wing area plus
winglet area. The values of figure 2(c) correspond through A, y/a, and y with
those of figures 2(a) and (b). Figure 3 results from cross plotting the values
of figure 2. The decrease in wing root bending moment coefficient as the
winglet approaches the up position is shown clearly in figure 3. For A =
10.94 at v = 90 degrees the root bending moment is 4.3% less, however, induced
drag ratio is 3.4% more than that at y = 0 degrees. The planar rectangular wing
induced drag Dip is not a constant in the Di/Dip ratio but varies with the
planar wing aspect ratio Ap. The value of Ap was specified under the
conditions that 1ift and wing root bending moment of the planar wing equal
that of the nonplanar wing. Curves of only the rectangular wing winglet
induced drag versus wing root bending moment are presented in figure 4. The
induced -drag parameter is e”! = 7A Cpj/CL?, aspect ratio is 10.94, and the 1ift of
the various configurations is the same. As shown in figure 4, at low values of
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root bending moment, the induced drag is marginally less at high values of
dihedral cant angle. The flat winglet y = 0 configuration curve almost
envelopes the higher y angled curves. However, the y = 0 curve is characterized
by large negative values of y/o which become less negative as angle of

attack increases resulting in larger root bending moment coefficients.

A deep and narrow drag bucket means that induced drag is sensitive to
changes in y/a. Thus, when a design toe-in angle is specified, any change in
angle of attack or 1ift will alter the y/o ratio and induced drag rises up
the side of the drag bucket. In this regard, the ideal would be zero toe-in
angle; then the y/o ratio remains the same at any 1ift. The dihedral cant
angle vy has a valuable asset in that it influences the position of the induced
drag bucket along the y/a axis. Then y can be chosen such that minimum
induced drag ratio can be obtained with minimum y/o ratio. Examination of
figure 2(a) indicates that, for this wing winglet configuration, the minimum
induced drag for y/a = 0 occurs at y = 71 degrees as A -~ », and at v = 90
degrees for A = 10.94. In view of this characteristic a good A = 10.94
rectangular wing winglet has y = 90 degrees, y/a = 0, and minimum induced
drag. For example, a designer has proposed an aspect ratio equal to nine
planar rectangular wing, and asks if drag can be reduced without altering
wing root bending moment. From figure 2(c), when Ap = 9, y/a = 0, v = 90,
then A = 10.94. The bending moment coefficient from figure 2(b) is Cmb/CL =
.1041 which leads to the same root bending moment as that of the planar
rectangular wing. The induced drag ratio from figure 2(a) is Di/Dip = .899.
Thus, the designer has an alternative configuration which has 10.1% less
induced drag, the same wing root bending moment, and equal surface area.
Since surface areas are the same, friction drag is approximately the same
for planar wing and wing winglet configurations. This wing winglet config-
uration is with winglet starting at ¢g = 5n/32 span station. The effect of
other winglet sizes needs to be investigated for establishing an optimum.

The swept wing approximation equations can be applied to the rectangular
wing winglet example. In the rectangular wing solution, (C/Cav)e of equation
(170) was unity. Then
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c 1 -sin A+ 2 gce sin A

Cav 1 -sink+2 Jof sin A

(174)

where occ is given in equation (171). Inserting equation (174) into equation
(171) and solving for o, gives

1 1 - sin A
GCC = — - - (]75)
2 tanh lsin a 2 sin A
then equation (174) becomes
-1 . -1 .
¢ _ (tanh™" sin A) ~ sin A (176)

Cay 1 -sin A+ 2 Jof sin A

where A is the half chord Tine sweep angle. As an example with A = 30
degrees

c_ _ 1.8205
Cav - T+ 2 ]0'| (177)

which is not a straight-tapered wing. However, a mean taper ratio is
approximately A = 0.29. From equation (172) with A = 30 degrees and

A = 10.94 the swept wing aspect ratio is A = 9.47, and swept wing 1ift
coefficient is 0.866 times that of the rectangular wing winglet. Thus, in
this example, the A = 10.94 rectangular wing winglet results of figures 2,
3, and 4 apply equally to a 30 degree sweptback wing winglet of aspect
ratio 9.47, with approximately a taper ratio of 0.29.

CONCLUDING REMARKS

A goal for the nonplanar wing loading theories developed in the
present report was to satisfy bouhdary conditions of the wing analytically
at all points. This goal was attained by Fourier analyses which permits
integration of wing chord and wing inclination boundary conditions which
specify no flow through the wing. The nonplanar load line, slender wing,
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elliptic wing, and infinite aspect ratio limit theories have proved to be
useful tools for applications in loading aerodynamics. They give Tifting
surface accuracy with 1ifting 1ine theory simplicity, that is, they remain
quasi two-dimensional solution methods. Because the boundary conditions are
satisfied at all points, the spanwise loading circulation can be predicted
accurately for complex spanwise distribution of angle of attack such as that
due to winglet or control surface deflections, wing twist, induced angles by
multiwings, multiwinglets, ground, walls, jet, or fuselage. Because of the
quasi two-dimensional nature of these theories they are well suited for

these complex type of loading solutions, since, in many cases, the induced
angles normal to the surface due to the added configurations are likewise deter-
mined for two-dimensional flow. Force and moment coefficients of nonplanar wings
involve integrations along the nonplanar surface of loading circulation vectors
relative to the surface. Equations for nonplanar wing 1ift, running wing
bending moment, rolling, and induced drag coefficients are developed. The
nonplanar wing induced drag coefficient is equal to the planar wing induced
drag expression plus a summation of products of wing circulation Fourier
coefficients and nonplanar induced drag influence coefficients. These
influence coefficients are functions of the nonplanar curve of the wing but
are independent of any other wing geometry parameter. Swept wing parameters
are approximated for wing chord and aspect ratio. These are used in the load
Tine method for obtaining nonplanar swept wing solutions.

Example application of these theories have been made for a rectangular
wing with wingtip winglets. In this example configuration the winglet extends
from span station .882 to 1, and winglet chord equals wing chord. The thirty-
degree swept wing planform equivalent to the rectangular wing has a taper
ratio of about 0.29. Compared with a planar rectangular wing of equal Tift
and root bending moment, the winglet wing has minimum induced drag ratios of
.948, .869, and .336 at aspect ratios of 0, 10.94, and ~, respectively. The
study of this example shows that there is just a deep a drag bucket with
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winglet planar, but with negative deflection, as with the winglet up at high
dihedral cant angle. However, it was found that dihedral cant angle has a
valuable asset in that for the optimized design configuration the drag at
the bottom of the drag bucket can be realized for any wing angle of attack
or 1ift, whereas for the planar winglet the drag rises up the side of the
drag bucket as angle of attack increases or decreases.

Vought Corporation Hampton Technical Center

Hampton, Virginia 23666
March 21, 1977

62



REFERENCES

von Karman, Theodore; and Burgers, J. M.: General Aerodynamic Theory -
Perfect Fluids, Vol. II of Aerodynamic Theory, div. E, W. F. Durand,
ed., First Dover edition, Dover Publications, New York, 1963. pp. 201-
236.

Cone, Clarence D. Jr.: The Theory of Induced Lift and Minimum Induced
Drag of Nonplanar Lifting Systems. NASA TR R-139, 1962.

Whitcomb, Richard T.: A Design Approach and Selected Wind-Tunnel Results
of High Subsonic Speeds for Wing-Tip Mounted Winglets. NASA TN D-8260,
1976.

Ashley, Holt; and Landahl, Martin: Aerodynamics of Wing and Bodies.
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1965.
pp. 208-226.

Heyson, Harry H.; Riebe, Gregory D.; and Fulton, Cynthia L.: Theoretical
Parametric Study of the Relative Advantages of Winglets and Wing-Tip
Extensions. NASA TM X-74003, 1977.

DeYoung, John: Wing Loading Theory Satisfying All Boundary Points, Ph.D.
Dissertation, The University of Texas at Arlington, Arlington, Texas,
Dec. 1975.

DeYoung, John: Rule of Thumb Equation for Predicting Lifting-Surface
Theory Values of Lift. Jour. of the Aeronautical Sciences, Vol. 24,
No. 8, Aug. 1957. p. 629.

DeYoung, John: Spanwise Loading for Wings and Control Surfaces of Low
Aspect Ratio. NACA TN 2011, Jan. 1950.

DeYoung, John; and Harper, Charles W.: Theoretical Symmetric Span
Loading at Subsonic Speeds for Wings Having Arbitrary Plan Form.
NACA Report 921, 1948.

63



TABLE I. - Ln*w COEFFICIENTS FOR EQUATIONS (41) AND (71) OF

PLANAR-WING WINGLET WITH ¢o= 57/32 AND M=15

Y 1 2 3 4 5
deg| n* 7 )
90| 1 |.01931 .13347 -.11359 .04958 .03096 .01885 .01361 .01221
3 |-.04873 -.16124 -.10834 .03594 .02439 .01516 .01104  .00993
5 | .04879 -.05402 -.09461 .01476 .01390 .00921 .00687 .00624
7 | .02698 .07104 -.06937 -.00490 .00349 .00319 .00261 .00246
9 |-.02714 .06417 -.03415 -.01567 -.00341 -.00101 -.00042 -.00025
11 |-.02089 -.01173 .00316 -.01888 -.00542 -.00256 -.00163 -.00135
75| 1 | .00066 .08511 -.06993 .03114 .02046 .01291 .00951 .00858
3 |-.02812 -.11212 -.06670 .02232 .01600 .01033 .00769 .00696
5 | .03297 -.02911 -.05830 .01264 .00891 .00627 .00473  .00433
7 |.01538 .04714 -.04294 -.00384 .00192 .00202 .00173  .00165
9 |.01795 .03687 -.02156 -.01048 -.00262 -.00086 -.00039 -.00025
11 |-.01296 -.01042 .00110 -.00982 -.00381 -.00186 -.00120 -.00100
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TABLE II. —n*%—Dnn*COEFFICIENTS FOR EQUATIONS (69) AND (93)
OF PLANAR-WING WINGLET WITH ¢o = 5m/32

n‘*
1 3 5 7 9 11
deg| n\| o _
1 |.03335 .00666 -.00167 -.01243 -.06192 -.10534
3 [-.00333 -.17809 -.16927 -.05646 -.02895 -.06658
5 |-.00258 -.16334 -.09138 .08085 .11343 .03307
7 |.03630 .02441 .11900 .18434 .11512 -.00789
9 | .03156 .12523 .17174 .08391 -.03334 -.07625
11 |-.02442 .06277  .04171 -.11282 -.16333 -.02769
1 |.02254 .01464 .00887 -.00752 -.04600 -.06860
3 |-.02833 -.11801 -.09743 -.03368 -.02510 -.04331
5 |-.02362 -.10743 -.05579 .05572 .06810 .01018
7 | .02184 .01044 .07264 .11569  .06939 -.01221
9 | .01822 .08039 .10960 .04817 -.02089 -.03748
11 |-.01661 .04548 .02751 -.07520 -.09798 -.00506



TABLE III. - n* %Knn*COEFFICIENTS FOR EQUATIONS (39) AND (87) OF
RECTANGULAR WING WINGLET WITH ¢y = 5m/32 AND Apq = 1

Y Y‘ 1 3 5 7 9 11
deg] n\ o N

1

3

5

7

9

90 .03511 -.06588 -.04584 .00025 -.05336 -.12659
.01535 -.32053 -.22541 .01423 -.00065 -.13283
.02287 -.30001 -.09515 .20900 .15731 -.04113
.06097 -.02873 .21046 .32421 .12296 -.08051
.03951  .15523 .31146 .14626 -.12323 -.14249
11 |-.04557 .11283 .14343 -.17091 -.34193 -.06549
.02294 -.04218 -.01601 .00123 -.04333 -.08389
.00757 -.20220 -.12487 .01266 -.01483 -.09166
.05132 .13694 .08803 -.03467
.03396 -.02045 .13428 .20153 .06996 -.05948
.01968 .10354 .19886 .08172 -.07742 -.07450
11 §-.03292 .08485 .09031 ~-.11774 -.20657 -.02172
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TABLE IV. - n*%{nn* COEFFICIENTS FOR EQUATIONS (39) AND (87)
OF RECTANGULAR WING

=

*
—
w
o
~
=)
—
ot

11 1 1 1 1 1

3 |1/3 4.6 3.3809 3.17778 3.10390 3.06838
5 |1/5 2.02857 8.93651 6.14748 5.5%9620 5.37314
7 \1/7 1.36191 4.39105 13.68594 9.19620 8.22020
9 |1/9 1.03463 3.10900 7.15260 18.72562 12.46581
11 j1/11 .81368 2.44234 5.23103 10.19930 23.98962



TABLE V. - EXAMPLE LOADING CHARACTERISTICS SOLUTIONS OF

RETANGULAR WING WINGLET WITH

¢ = 5m/32 AND Ay = 1

v E A ay/a az/a] ag/a] ay/a] ag/aj C by CDi e
deqf « . o o mRo?
90 |-1 |~0 | .8761 -.0978 -.0634 -.0168 .0056]1.339A .1304A .2081 .8733
10.94| .2480 -.1378 -.2178 -.1059 .0127|4.263 .4261 .0217 .7094
| +w |3.055/A -.3508 -.6666 -.5449 -.2299 o
.25 | 10.94] .2640 -.0168 -.1124 -.0569 .0087|4.4100 .4546 .0195 .8440
0 |-0 | .9217 -.0463 -.0317 -.0057 .0011]1.393A .1379A .2219 .8857
10.94| .2690 .0236 -.0772 -.0405 .0074(4.446 .4626 .0195 .8608
+« |3.528/A .0370 -.1753 -.1550 -.03%6|
1 |-o0 | .9672 .0003 -.0029 .0043 -.0031|1.447A .1453A .2418 .8769
10.94| .2001 .1614 .0431 .0154 .0028|4.615 .4963 .0235 .7690
> | 4A 13 1/5 17 1/9 -
751-1 |+0 | .9038 -.0786 -.0491 -.0210 .0064|1.387A .1372A .2151 .9066
10.94| .2547 -.0889 -.1754 -.0927 .0116(4.348 .4421 .0203 .7877
>~ |3.178/A -.2395 -.5255 -.4320 -.1743)
-5 |>0 | .9261 -.0548 -.0342 -.0155 .0044|1.416A .1413A .2224 .9136
10.94| .2652 -.0135 -.1091 -.0610 .0097|4.460 .4639 .0194 .8674
>~ |3.414/A -.0467 -.2814 -.2392 -.0783]
0 |-0 | .9463 -.0311 -.0194 -.0100 .0025]1.441A .1451A .2294 .9154
10.94] .2750 .0620 -.0427 -.0293 .0078|4.581 .4905 .0198 .8964
> |3.650/A .1211 -.0689 -.0705 .0083]
0|-2.25d >0 | .8911 -.1002 -.0645 -.0281 -.0018|1.400A .1407A .2097 .9466
=2 {10.94 .2475 -.1037 -.1905 -.1015 .0100|4.251 .4320 .0197 .7772
-1.25| 10.94| .2651 -.0064 -.1038 -.0582 .0089|4.553 .4863 .0189 .9272
1 |->o0 | .9522 -.0412 -.0265 -.0116 -.0007|1.496A .1553A .2288 .9906
10.94| .2706  .0260 -.0750 -.0438 .0086|4.648 .5045 .0191 .9577
+« |3.528/A .0371 -.1753 -.1550 -.0365 |
0o |-0 | 1 0 0 0 0 | .57 A6 1/4 1
10.94| .2914 .1556 .0405 .0139 .0071|{5.005 .5779 .0230 .9236
> | 4A 13 15 17 1/9
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TABLE VI. - COMPARISON OF INDUCED DRAG OF RECTANGULAR WING

WINGLET, ¢g = 51/32, My =

1, WITH PLANAR WING OF

EQUAL LIFT AND EQUAL WING ROOT BENDING MOMENT

( Planar ellip- Compared with planar
Y v A . Cmby | tic wing, ep=1 rectangular wing
deg | © CL Ap/A  Di/Djp ep Ap/A Di/Dip
90 1 -1 +0 .8733 .0974| .8421 .9642 .8421 . 9642
| 1.70.94] .7094 .1000} .8874 1.2509 | .9470 .7664 11,0231
-.25 10.94] .8440 .1031 -9440 1.1185) .9393 .8111 . 9028
0 >0 .8857 .0990| .8702 .9825 .8702  .9825
| ]1.10.94] .8608 .1041 9618 1.1173 | .9380 .8252  .8993
1 -0 .8769 .1005| .8965 1.0224 .8965 1.0224
. 1 70.94) .7691 .1075] 1.0270 1.3354 | .9334 .8768 1.0642
75 | -1 + 0 .9066 .0989] .8687 .9583 .8687  .9583
10.94f .7877 .1017| .9184 1.1658| .9412 .7907  .9448
-.5 >0 .9136 .0998( .8846 .9683 .8846  .9683
| . _ 1.10.94] .8674 .1040| .9612 1.1082| .9381 .8248  .8920
0 >0 | .9154 .1007| .9007 .9840 .9007  .9840
B 1 70.94{ .8964 .1071| 1.0181 1.1358| .9340 .8698  .9063
01-2.256f ~ 0O .9466 .1005] .8977  .9483 .8977  .9483
-2 10.94) .7772 .1016| .9175 1.1804§ .9413 .7900 .9568
[ -1.25 | 10.94| .9272 .1068| 1.0136 1.0931] .9343 .8662 .8729
-1 -~ 0 .9906 .1038| .9572 .9664 .9572  .9664
110,94 .9577 .1086| 1.0467 1.0929| .9321 .8924 .8685
o [ -0 |1 .1061] 1 1 1
10.94; .9236 .1155] 1.1842 1.28221 .9236 1
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TABLE VII. - COMPARISON OF INDUCED DRAG OF A - « RECTANGULAR
WING WINGLET, ¢o = 57/32, Ay = 1, WITH PLANAR
RECTANGULAR WING OF EQUAL LIFT AND EQUAL WING
ROOT BENDING MOMENT
n _
« | -1.25 -1.00 -.50 -.25 0 .25 .50 .75 1.00
Yo deg
90 1.3505 .8362 .5000 .3468 .3818 .6098 1.0362
75 8284  .4915  .3447 .3860 .6198 1.0501
0 .8337 .5000 .3780 .5971 1.0000
Ap/A or (8 Cmbr/C_L)?M B o
90 7639 .7708 .7778 .7848 .7918 .7988  .8059
75 .7580 .7785 .7989 .8192  .8394  .8596
0 7179 .7778  .8924 .9471  1.0000
MINIMUM DRAG AND CONDITIONS FOR MINIMUM DRAG, A + = o
v, deg 105 90 75 60 45 30 15 0 70.74
v/ 5582 .3294 .0709 -.1697 -.3761 -.5343 -.6338 -.6677 0
A/ A .7691 .7870 .8047 .8210 .8364 .8457 .8524  .8547  .8095
Cnby/ CL 1096 1109 .1121  .1133  .1143  .1150 .1154 .1156 .1125
D;i/Dip .3373 .3373 .3371 .3368 .3364 .3361 .3359 .3358 .3371
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vorticity sheet,
Zy = ZV(YV)

(a) Single nonplanar vorticity sheet.

vorticity
sheet i

7

VAN

YiweZi )
(YiwsZjw (Y3v-Z3y)

0
0

Y

(b) Multiple nonplanar vorticity sheets.

Figure 1. - Coordinate system in yz plane of nonplanar trailing
vorticity sheets which extend longitudinally unaltered
from zero to infinity.
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(a) Induced drag ratio.
Figure 2. - Characteristics of rectangular wing winglet, ¢o = 57/32,

Mo = 1, compared with planar rectangular wing of equal Tift
and equal wing root bending moment. Subscript p refers to
planar wing value
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Figure 2. - Continued

71



J>+:J>

.00

.96

.92

.88

.84

.80

.76

72 ]
-1.

~10.94
.8977
lat L= -2.256 ®
o
(+) ””’/\:‘0 -
’_,./’ . //
/”— -
/’/— o
—‘,—’ /7,
Aog —
Q_ — s -
/O// 0 //, / / ,
— ,@/\;10.94 e
// ,/
,/// &O/ ,’,//
7 70094
R ~ So s N
ad / //
e ~ e -
/// / ,’,, /<O/
/ // — Y A =
e s
" s 0°
- — 7
_— R4 75° ---------------
— ,// _ )
_ L e —
el | O"-indicafes %p_ at min. Di
// ! m; .
1 7 ' 1 S T ) .
-1.2 -.8 -.4 0 !

Qe

(c) Aspect ratio of planar wing.

Figure 2. - Concluded,



1.
A - O-:'
.9-._
A =10.9
8
7 F
Diy
Di;)min
.6
5r
Ar " ,
‘. y = 1o§ 9£ jr7§ 562 ,4§ :ZO@/O
: A +.°°/- T
B T l S S — — '_ : : -
.096 .100 .104 c .108 112 116
mbr
CL

Figure 3. - Minimum induced drag as a function of wing root bending
moment coefficient from data of figure 2. The angle v,
in degrees, is the winglet dihedral cant angle measured
from the wing plane.
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wing-winglet as a function of wing root bending moment
coefficient, from data of Table V.
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